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Abstract

By definition, ice whit]) survives the summer is classified asmultiyear ice. Thus, the arca
covered by multiyearice during the winter should bencarly equivalent to theice area during
the previous summer’s minima. This condition provides a reasonable criterion for the eval-
uation of ice concentrationand ice type retrieval algorithms using remote sensing dat asets.
Irom SSMldata, the NASA Team algorithm estimates the multivear, first-year andtotalice
concentrations during the winter using combinations of the polarization ant] spectral gradi-
ent ratios. The Team algorithm provides only estimates of ice concentrat jon in the summer.
From INRS-1SAR data. the remarkably stable contrast between multivear ice and first-year
ice provides consistent est imates of mult ivear ice concentrations. in the summer, multivear
ice concentration cannot be estimated from SAR or SSM1 data because free water onthe
surface effectively masks the backscatter and emissivity signature of this ice type. From
SAR data, a technique which takes advantage of the nigh backscatter of wind-roughened
open water as a discrimination feature is used to cstimate the total ice concentration in the
summer. With a year long (Jan 92 to Jan 93) dataset from the Beaufort Sea, we found
that the multiyear ice concentration estimates from the SAR data to be very stable and
[/{5( /'{nca‘rly equivalent to the ice concentration estimated at the end of the previous summer.
We contrast this with the variability of the MY ice concentration and ice fraction estimates
obtained using SSM1data. T'he Team algorithm produces ice concentration and multiyear
ice estimates which are consistently lower than those from the SAR data. We suggest rea-
sons for these discrepancies and discuss tile implications of the higher than previously noted

multiyear ice concentrations onmass balance studies.




1 Introduction

The total ice and multivear ice concentrations estimated using the NASA scaice algorithm
[Cavalieri et al.. 19S-1] or Teamalgorithm provide a fairlvlong temporalrecord of t he charac-
ter of’ the polarice cover using data from the Scanning Multichannel Microwave Radiometer
(SMMR) and its successor, the Special Sensor Microwave Imager (SSM 1), If the scasonal
records arc examined,one finds that the retrieval algorithm pro~'ides estimates of multivear
ice concentration in the winter which are much lower (by up to 30%) than that of the sum-
mer ice concentration. From an ice balance perspective, such large disc repancies need to be
resolved. If ice whit]] survives thesuminer is classified as multivear ice. then the multivear
ice concentration during the winter should be nearly equivalent to theice concentration dur-
ingthe previous summer's minima, differing by an amount due to melt. ridging. new/voung
ice formation and export of ice from the Arctic. This mismatch was noted by a number of
investigators from the point of view of variability of the multichannel microwave signatures
of scaice from SSMIinregional studies [7homas, 1993] and surface measurements [Grenfell
and Lohanick. 1 985; Grenfell,;’1992]. and {rom an ice balance point of view [Comiso, 1

Ttothrock and Thomas.1991: Rothrock and 7110112QS, 1 993).

Currently, the Team algorithm provides the only long-term record of multivear ice and total
ice concentration derived from objective analysis of the passive microwave obscrvations. The
only other estimate we are aware of was made by Wittmann and Schule [1 966]) which gives a
multiyear ice concentration of over T0%. is based onacrial surveys. 11 is apparent that hetter
multiyear ice observations are needed to establish the true nature of the ice cover. Valida-
tion studies for the Team algorithm shows overestimates insome areas and underestimates
in others [Cavalieri ef al, 1992]. Rothrock and Thomas [1991] used a Kalman filter/smoother
to couple a physical model andthe Team algorithm analyses to obtain optiinal estimates of
the totalice and multiyear ice concentrations to overcome some of the difficulties of the the
raw observations andto provide a more consistent temporal record of theice cover. The

Kalman filter increases the winter multiyear ice concentration and decreases the summer ice
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concentration so as to climinate the inconsistency between the summer and winter concer -
tration estimates from the Tcam algorithm. As they noted, the filtered estimates would be
biased if the measurements are themselves biased. They demonstrated that the assumption

of puresignatures introduces biases in the Team algorithm  estimates.

With the launch of the Furopean Farth Remote Sensing Satellite (ERS-1) 1 July of 1991 .
this (’-hand Syuthetic Aperture Radar (SAR) has provided a different view of theice cover
than that offered by the SSMI sen sor. The much higher resolution allows us to distinguish
betweenfloes and leads most of the time. andthere is suflicient backscatter contrast between
ice typesthat theiridentification is possible under certainconditions (discussed more later).
The limitations of sensor swath width (1001ml), orbit orientation and lack of anonboardtape
I’cc.older, however, did not provide a system suitable for routine monitoring of the Arctic
sca ice cover 1 the SSMI fashion. However, comparison of thescasonal record of regional
ice concentrations estimated at coincident SAR and SSMI location s are possible and offer-
another independent characterization of the state of the seaice cover. Here, we compare the
ice concentrations derived from aset of S, Al{ data and the same ice concentrations estimated
using the Team algorithm. The questions we would like to ask are: (@) how do the average
total and multiyear ice concentrations vary over a seasonal cyc]é?;/and, (b) how accurate arc
the estimates from passive microwave data? A comparative study of results from SSMland

SAR data is made here to gain insight into some answers to these questions.

As a basis for evaluation of the retrieval algorithms, we would like to present a simplified
view of’ the character of the annual eyvcle of the Arctic scaice cover (showninlig. 1) based
on our definition of multiycarice. The validity of the estimates of theice concentration
obtained using the Team and SAR algorithms are measured against these trends. In the
winter,the areal extent, of multivearice remains fairly coustant with a small decrease due to
ridging and export of icethroughthe ¥ram strait. The total ice concentration stays close to
unity because water inopenleads freczes rapidly at sub-freczing temperatures. The first-year
ice concentration increases as theice inpreviously open leads thickens and able to survive

the mechanical stresses withintheice cover. After the spring/summer transition, the total




ice, multivear and first-year ice concentrations would start to decrcase due to lateral melt
because of the above-freezing air temperatures throughout the Arctic. Very little first-vear
icc is produced during the summer. At the end of the sumimer. all the ice 1 the Arctic
Ocecan becomes multivear ice (by definition) resulting in a sharp increase in the multivear
ice concentration.  Consequently. the multivear ice concentration al this time should be
roughly equivalent to theice concentration at the summer’s end. This cyele is then repeated
during the nextice season. We note here that this is more valid as a regional view rather
than alarge scale view. Onthe Arcticscale, the seasonal transitions occur at different dates
at different locations and the transi tions themseclves are not as sharp as the view presented

here.

In this study, we present results of a comparative analysis of the multiyear ice concentration
estimates from the Team algorithm and the SAR retrieval algorithm using a dataset spanning
January 1992 through January 1993. We also compare total ice concentrationsand discuss
the differences in the three periods separated by the onset of melt during the spring /summer
transition and the fall freeze-up during the summer/winter transition. The differences are
examined interms of consistencyinthe analysis and the effect of signature variability on
these estimates.  The implications of these differences on the multiyear ice balance and

computlation of the actual ice cover are discussed.

2 Data Description

Region of Study

The region wc sclected for the comparison is shown in ¥ig. 2. The shape of the castern
and western boundaries of the region are defined by ¥ RS- 1 orbits used in this study. The
southern boundary is at approximately 70°N and the northern boundary is at approximately

85°N.




SSM/1 Data

Brightness temperatures from all SSM/1 channels were gridded to a standard rectangular
polar stereographic format for analysisof the dua polarized multispectral data. Daily av-
crages were mapped to a 304 by 448 matrix with a grid size of 25 kin by 25 km. Only the
19 and 37GHz channels are used in the retrieval of total and multivear ice concentrations.
The 22GHz channel is also used but only as an ocean mask. The radiometer observations
arc made at au angle of incidence of 53.1¢ at the Farth’s surface and a a swath width of

139'1'1:111.
SAR Dala

We sclected a total of 571 RS-1SAR images between January 1992 and Jauuary 1993
for the comparative analysis. This represents approximately 44 images per month. All the
SARimages for a particular month were collected within a three-day period carlyin the
month. The sensor is aC-band (5:3G11z) radar operated with vertical transmit and receive
polarizations at a look angle of 20°. Within the antenna beam, which illuminates a swath

of approximately 100km i width, the incidence angles on the ground vary from 19° at
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near range to almost 26° at far range. Theimage data used in this study were received
and processed at the Alaska SAR Facility (A SI)in Fairbanks, Alaska. Fachimage frame
\\ covers anarca of approximately 100k mby 1001{111.* "J‘hoimag(' data used in this study have
asample spacing of 1 00m. Thislower resolution data type was selected because the lower
speckle content reduces the uncertainty in the estimates. Ancillary dataare provided with
cachimage frame for calibration and conversion of the 8-bit digital data into normalized

backscatier cross-sections.

The SAR analysis algorithms we use requires a calibrated dataset because the identification /f
of thescaicetypes is based on tabulated expectations of the backscatter [Nwok ¢l al., 1992].

Calibration of the radar is mcasured inanabsolute and relative sense. The absolute calibra-

tion accuracy metric quantifies the unccrta‘inty/ the observed normalized backscatter cross-
i
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section (o, ) measurement relative to the actual o, of a distributed target. Typically. this
appears as a bias when anidentical target from two image frames (imaged at different times)
arc compared. The in-scene variance of a radar target known to have uniform backscatter
cross- section is measured by the relative calibration accuracy of the data. Relative calibra-
tion is usual ly better than absolute calibration and is easily maintainable especially if the
radar scnsor is stable. The data products used iu this study have expected absolute and

rclative accuracies of 2dBand1dB, respectively.

Wind and temperature ficlds

Surface wind and temperatu re ficlds obtained from the fror; National Metcorological Center /
(NMC) were griddedat (2.5” latitude by 5°longitude grid) at twit.c-daily interval centered 2
- 007 and 12007. in the NMC analysis process, the observations are interpolated to a grid.
Becausce large parts of the world have no observations andthe data arc nottaken at one

time (observations are included if it is within 6 hours of the forecaset time), NMC uses a
model forecast to help with the interpolation. Therefore, the data provided are a blend of
observational and model data, While the temperature fields may not represent the actual
physical surface air temperature due to uncertainty in the NMC analyvses (typically the
temperature fields are biased due to difliculty in modelling the inversion laver), they are

nevertheless good indicators of the surface conditions.

3 Data Analysis

We describe the algorithms used in our analysis and their expected precision. The details of
these algorithms and their limitations, especially the Team algorithin, have been discussed
mthe references provided below. Here, we provide a more detailed accounting of the SAR
algorithmns since they are relatively recent developments. In tile remote sensing of theice
types of interest here, we would like theicelayer rather that the surface cover to provide

the largest contribution tothe observed signature suchthatthe retrievalalgorithins are
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not confounded by surface eflects. These algorithms are dependent on the stability of the
signature of ice types for correct interpretation of the active and passive microwave aata.
The variability of the passive and active sca ice signatures are typically aflected by surface
conditions. Surface processes typically affect the shorter wavelength observations and lower

frequencics are less affected by the atmosphere and minor modifications of the snow laver.

lec concentration from SSM/I data

Brightness temperatures from all SSM/Ichannels were griddedto a standard rectangular
polar stereographic format for analysis of the dua polarized imultispectral data. Using the
spectral gradient ratio (GR) at 37 GHz and 19 GHz, and the polarization ratio (PR ) at
19 GHz,the concentration of open water, first-year ice and multiyear ice are computed
at cach 25 ki cell using the NASA Team algorithm [Cavalieri et al.,1984: Gloersen and
Cavalieri, 1 986). The procedure to estimate the total ice andice type concentrations in an
SSMIpixel is based on a mixing formulation which assumes that multiyearice, first-year ice
and open water have temporally and spatially stable signatures. The precision of the open
waler estimates, in the Beaufort and ChukchiSeas, ranges between-2.14 3.1 % and 0.64-7.4%
[Cavalicri, 1992]. The variance in the multivear ice estimates, when compared with estimates
from other sensors, are nigher and trends are not evident. The reader is referred to Cavalier

[1 992] for asummary of the uncertaintiesinthe Team algorithm-derivedice concentrations.

lee type concentration from FRS-1 SAK data in winter

In the winter, we derive open water, first -year ice and multiyear ice concentrations using an
algorithm described in Nwok et at. [1 992]. The algorithm uses a fairly simple backscatter-
based classification scheme toidentify the different ice types. Fach pixel is classified into
one of thethree categories. No attempt is made, because of the higher resolution of the
SAR data, to resolve the diflerent types within a pixel as is done in Team algorithm. During

the Arctic winter, there is a persistent contrast between the multiyearice and first,-year ice

[Kwok and Cunningham,1994] to allow easy discrimination between the two ice types. An




example of tile ice classification map is showninIig. 4. Fetterer et at. [1994] evaluated the
performance of this algorithm and reported that the precision of multivear ice concentration
(‘stimalcs‘;ré better than 6%. Fetierer et al. [1994] ant] Steffan and Heinricks [199.1] also
pointed out that the algorithm sometimes fails to correctly classify open water and 11N% ice
due to overlap in the range of backscatter of these ice types. As an independent estimate,
we evaluated the precision of our multivear ice retrieval procedure, using ten pairs of SAR
images of the same area acquired by the 3-day repeat cycle of ERS-1. The differences are
less than 1% (Table 1). The results indicate that the signatures are stable at least over the
short term and that the higher uncertainty observed by Fetterer ¢t al. [1994) is probably
duce to a combination of spatial or temporal variability of theice signature. Thic higher than
nornal backscatter of frost- flower covered sca ice could also be problematic due to their’
time-dependent signature [Kwok and Cunningham,1993], but we expect tha? thc fraction of
thisice category to belessthanthe fraction of newly frozen leads, which is less than a few
p ercentin the winter Arctic. Another limitation with this backscattcr-based classification
is the potential con fusion between deformed first-year ice and multiyear ice especially inthe
region of transition between the seasonal and perennialice zones [fignot and Drinkwater,
1 994]. Both ice types have similar backscatter and based on their analysis of aircraft SAR
data, the multivear ice concentration could be ovm’ estimated by as much as 15%. There is
also the issue about flooding and then refreezing that suppresses the backscatter and causes
underestimates in the multivear ice concentration. In the next section, we address this issue

more thoroughly when we analvze our scasonal SAR dataset.
lec concent ration from RS- 1 SA R datain summer

We do not intimate the multivear ice concentration in the surmmner. After the onset of melt
inthe spring, the free water in the snow layer or bareice surface act as a barrier to radar
penetration into multiyear ice layer thus reducing the voluine scattering contribution to the
observed backscatter. The contrast between first-year and multiyear ice at C- band (sce
d ifferen ce between I'igs. Ge and f) is lost and there is at present no effective means for ice

type classification in the sumnmer time. i most cases, only openleads and ridges are visible
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in I'RS-1SAR data of the summ erice cover. which has a range of backs catier between -
1 7dBand-14dB. Open water backscatter is dependent on wind speed and is typically higher
than that of the ice cover if the wind speed is above 4-5m/s. The azimuthal look direction
introduces only 1-2 dB of modulation of the backs catter at 19RS-1look angles. We estimate
open water inleads by using an algorithm [Comiso and A’we]:. 1995 which takes advantage
of the higher backscatter of wind-roughened open water relative to t heice cover. Wiith an
mmdication of windspeed, the thresholds are adjust ed visually to discriminate between water
andice. During calim conditions ice concentrations arc also derived, but the uncertaintics are
larger because of the decrease in contrast. The precision of our estimates are approximately
2-3% during windv conditions (above 4-5 m/s).To illustrate how effectively this technique
works, I'ig. 4a shows a typical summer SAR image near theice edge, while Fig. 4b shows a
color- coded version of the result of the classification technique. Since meltpondsareblended
in with the backscatter of ice andsnow onice floes, the meltpondsare classified as icein
our algorithm. However, sub-resolution leads are not accounted for, for the same reason
and cause crrors in the analysis. There dots not exist inthe observational literature the
fraction of lead area covered by leads that are not resolved by the SAR data usedin this
analvsis. Lin dsay [Personal Communication, 1 995] mecasured the area contribution of leads
with widths less than 100m to be approximately 22% using Channel 3 of a Landsat ‘1’ M
image during April inthe Beaufort. Within that image, the mean lead width is 140 m with
few leads more than 500 m wide. If these statistics can be considered typical for the sunmmer
and winter, then this resolution problem would cause a 2% error inthe SAR estimates in
regions with 90% ice cover. More extensive observations, preferably airborne surveys, are

necessary to better quantify this error.

4 Results and Discussion

For a quantitative comparison]] of the estimates from SSMland SAR, we divide the area

into five latitude bands with intervals of 2.5° starting at 70°N. Several SARinages atthe




beginning of each month from January through December 1992, covering the region shown

ty
;1

mlig. 2 were analvzed. The corresponding dailv SSM1 data withinthe 1001< 111 by 1 00km
arca represented by cach SAR image frame were also analvzed. Typical S.11{ images for cach
month over the same general region are shown inFig. 5. These images show spatial and
temporal details about the ice cover ant] indicate stability in the distribution. especially in
the winter. Co-registered total and multivear ice concentration data derived from both SAR
and SSMI] arc plotted 1 Fig. 6. The ice concentrat ion results from bot h procedures were
generally consistent except during the sumimer, wh'i]o the multivear ice concentrations differ

substantially. Det ailed discussion) of theresults avil‘é'prosented in the following sections. v
Total/mulliycar ice concentration (Jan-May)

Inthe winter, thetotalice concentrations agree to withinthe uncertainty of the estimates at
all latitude bands. ‘Jhere is almost 1 00% ice inthe Beaufort Sea in the winter. We note that
the Team algorithm occasionally provides anomalous estimates of ice concentrations thatare
greater than 1 00% during the winter when data points lic outside the region of validity in
PRand GR space. This is due to variability iunicetypesignatures,system errors or weather

cffects.

The multivear ice concentrations from the two analyses, however, are quite different. The
SAR-derived multivear ice concentrations are quite stable at the higher latitudes during this
period and the variability is withinthe precision of the algorithin. There is no significant
merease or decrease inthe amnount of multivear icc except near the transition between the
perennial pack and the scasonalice zone. These multiyear concentrations are consistent with:
ice kin ematics (discussed below) during this period and our expectationy that this parameter
st ays Tairly constant, especially in this part of the Beaufort Sea and the C(;'ntral Arctic. Within
thetwo lowest latitude bands, we attribute the variability to the advection of multiyearice
and first-year ice into and out of theregion of study (showninFig.2)and possibly to
theridging of first-year ice, large areas of ridged and highly deformed first-year ice have

approximately the saine backscatter signature as that of multi ycar ice. Sample strips of
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SAR imagery {rom this period are shown in Fig. 5. The contrast between multivear ice and
first-ycar ice persists throughout this period. The SAR-derived multivear ice concentration
isopleths are shown in Fig. 7. The ])at't('rn/\ of the contours have remarkable similarity
between observations which are temporally close to cach other (e.g. Fig. Ta and b) and

show a north to south decrease in concentration.

The Team algorithm estimates of multivear ice concentration have substantially different
spatialand temporal distribution q\that those of SAR data(Fig.8). The Team algorithm
results as showninlig. 6 also indicate a trend of’ decreasing multiyearice concentration at
the higher latitude bands. For example, between 75°N and 77.5°N there is a greater than
30% decrease in the multivear ice concentration between January and May. The ice cover
inthisregion computed from monthly velocity fields (between September 1, 1991 - April 1,
1992:sec Ig. 9) is actualy slightly convergent (O-1 O%) which would yield anoppositeresult.
With a mean velocity of 2cm/s, the total displacement of theice isless that 240 km, much
simaller than our regionof study. 1tis diflicult to explain this trend from the perspective
of icc cover divergence or a net advection of multiyear 1ce out of our study region. The
SSMImap of multiyvear ice concentrations of the Arctic Ocean for the months of January
and April and their differences are shown in Fig.  10. These synoptic maps show a general
decrease in multiyear ice between the two observations. We also note that the initiation of
this decrcase occurs earlier inlower latitudes. We hypothesize that this decrease is due to the
modification of the snow layer over multiyear ice by insolation, which is a latitude and time
dependent phenomenon. Hofer and Matzler [1 980] observed that the radiometric brightness
of asnow layer is very sensitive to the volumetric moisture content. Fven at sub-freczing
temperatures, a very small increase inthe snow wetness, in the O 10 0.5% range, can cause
alargeincrease in the observed brightness temperature (over 1 00°1<). So wc expect that the
radiometer at 37 GHz and 19 GHz to be extremely sensitive to environ mental conditions
which cause modification of thesnow layer. Of course, the actual observed magnitude of
these changes will be modulated by the extent of the surface types withinthe footprint of the

SSM/1 sensor. Inthe Arctic winter, the physical characteristics of the multiyear ice should
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be fairly stable and should have a very stable signature. Barring any atmospheric effects.
the changes on the surface of theice or the snow laver are the primary factors responsible
for the observed scasonal variability 1n the multiyearice concentrations (sec ig. 2. Rothrock
and Thomas [1 993]). If our hypothesis is correct. we expect to sec a reverse trend (i.c. an
increase in the multivear ice concentration) in the late fall, which is indeed he case as we
shall discuss later.

-~ o,

b =

R
The SAR estimates of multiyear ice ishigher than that fromn the Team algorithin. We discuss

this below inthe context of the character of theice cover a the endof the summer.
Total ice concendration (Junc-Seplember)

Neither the Team algorithmnor the SAR algorithm provide estimates of multiyearice in the
summer, S0 only a comparative analysis of totalice concentrations from the two approaches

is provided here.

Com isoand Kwok [1995] provide a more comprehensive analysis of the differences between
active and passive observations for this summer period. After the onset of melt in spring,
there is a gradual increaseinthe are;l] fraction of open water. The SAR-derived ice concen-
trationsare typically higher than L{lat of theTeam algorithm estitnates and the differences
are more pronounced at lower latitudes. A possible cause of this [discussed inComisoand
KNwok, 19957 is the contribution of meltponds to the open water estimates. Water in mnelt-

/ VES

ponds hiave the same passive microwave signature as that of water i open leads causing an
UI]dC)‘(‘SLiIIIaL;;-/C/)f ice concentration. The larger difference in the lower latitude bands may
be indicative of the latitude dependence of meltpond fraction. We note again that the SAR
estimates arc biased toward over-cstill-latic)ll of ice concentration because sub-resolutionopen
lcads are most likely classified as ice inthe summer time. We do not know, inthe current
observational literature, the relative area contribution of sub-resolution leads and meltponds

in the summer. If the contribution is small as wc discussed earlier, for meltpond concen-

trations of 20-30% [Komanov,, 1993] the meltponds would secm to be the dominant factor
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whicl 1 affect the microwave signatures. in other words, the underestimation of the Team
algorithm is moresignificant than the biasintroduced by small leads. These biases can only

be resolved with high resolution acrial survey.

To gaininsight into the discrepancies in the suinmer ice concentration retrievals. total ice
concentration was also derived using the Bootstrap algorithm [Comiso.1995]. A comparison
of the two SSMI results (Fig. 11 ) shows that the Bootstrap algorithm estimates are typically
higher than those of the Team algorithm. This is mainly because the tie-points used in
the Bootstrap algorithm are adjusted to account for changes i surface emissivity during
spring, mid-summer, and early autumn. However, this procedure is similarly confounded by

meltponds and values arc still lower than those of SAR [Comiso and Kwok,1995].
Total/multiyear ice concentration (September-December)

At, the end of the summer, the surviving ice from the previous spring becomes multiyvear
ice. The SAR results show thatthe multiyearice concentration inearly October is roughly
cquivalent to the SAI{-derived icc concentration at suinmer’s end. Based on the SAR analy-
is, theice cover seems to be fairly compact with high concentrations of multiyearice at all
latitude bands. Inthe following months, the concentration decreases (especially at the lower
latitudes) and returns to a level comparable to that of the previous winter. We attribute
this decrease to a convergence inthe ice cover inthe summer followed by a divergence of the
ice cover in November and 1 )ccember.Indeed, the monthly velocity fields (between April 1
- September 1, 1992: seelig. 9) also indicate aconvergence of theice cover in thisregion of
approximately 10-20% iu the lower latitudes anddivergenceof a smaller magnitude in the
fall. The openings in the ice coverin November can be easily observed inthe SAR image
strips shown in Fig. 6.The highly compactice cover (high ice concentration]) canbesecen
in the images shown in Iig. 12a and 12h. At this time, the ice cover scems to be com-
posed of primarily multiyear ice wit h low first-year ice concentration. The high backscatter
inthe leads are from wind-roughened open water. In October, the ice cover has low first-

year ice concentrations whereas in December the characteristic first-year ice signature (lower
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backscatter) is more evident duce to the thickening of theicein the openleads created mthe
previous months, The ice cover attains a backscatter character. interms of multivear ice
and first-year ice concentrations, that is similar to that of the previous winter (compare Fig

Ga.and Ing. 61).

There are large diflerences (about 50%) between the ice concentrations at the end of the
suminer and the multivear ice concentration during the subsequent winter as estimated from
the Team algorithm. Suchia mismatch may be due to the growth of new and voung ice during
tile summer. This would haveto occur simultancously with the melt of alarge percentage of
multiyear ice. From the time sequence shownin Fig. 5, it is difficult to explain how melt and
frecze-up of such magnitude could occur intheregion. Our expectation is thatthe amount
of multiyear ice should remain farly constant especially in tile higher latitudes inthe central
Arctic. This se(zm/:'tosupport our hypothesis (discussed above) thatthesnow cover could /H
be responding to environmental conditions or a decrease in shortwave inputwhich causes a

variabilitv in the brightness temperat ure sigriature of multivear ice.

Also, there is a large difference between multiyear ice concentration estimates {rom the
SAR and the Team algorithims. The differences are likely due to the spatial variations in
the emissivity of sea ice in the Arctic region [Carsey, 1982; Comiso, 19S3]. One factor
which causes such spatial changes in the emissivity is meltponding since frozen meltponds

arc known to have emissivities of' first year ice [Grenfell, 1 992]. This can be a substantial
cffect since 20-30% of t he sumier ice have been observed to be ponded [ Tucker, private
o1 munication, 1994]. Another factor could be unusually thick snow cover in some arcas

I} i

,’L,}ijéln can cause flooding (and subscquent refreczing) at the snow ice interface. Such effect
causes the snow /ice interface to be saline and the emissivity of the ice floe to besimilar to

thatof first-year ice.

Could the SAR analysis overestimate multivear ice concentration? It has been suggested
[Rignot and Drinkwater, 1994] that deformed first-year icc has backscatter similar to that of

multiyear ice in single polarization C-band datasets like P, RS-1. If this is the case, thenthe
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SARwinter algorithm would certainly overestimate the multivear ice concentration. But
we argue that, due to deformation of theice cover, the amount of deformed ice should
mcrease as the winter wears on resulting ina gradual increase in the estimated muluvear
ice concentration.  Indeed we do not observe such trend, at least not within the level of
uncertainty of the estimates. It is possible that deformed first -vear icc,y;a'i'cfﬁ}{ilc(l onto the
multivear ice and therefore not increase the concentration of muhiyoa(r ‘icc cven though the
polarimetric radar records a surface type which seems to be different than that of mult ivear
ice. We donot know the arcal contribution of this deformed first-vear/imnultivear ice surface
tvpe. If this area] fraction of this surface type is significant, it would contribute to an

underestimation of multivearice inthe passive microwave retrieval algorithimn.
Comparative Study of the Signatures

The multiyearice concentrations as inferred from SSM/] data with the Team algorithm make
use of gradientand polarization]] ratios. To gain insight into possible causes of disagrecments
between passive microwave and SAR multivear ice data, we show scatter plots of the gradient
and polarization ratios versus SAR backscatter (indB) in Fig. 13. Data from the entire
Beaufort Sea study area and also from diff’'went latitudinal bandsindicate thatthe gradient
ratios vary considerably while the polarization ratios are basically constant, for most of
the data points. The multivear ice concentration derived from passive microwave is thus

dependent mainly 011 the gradient ratios.

At t helatitudinal band between 70°N and 75N, the gradient ratios are shownto be inversely
proportional to the SAR backscatter. Between 75°N and 80°N, the data points do not appear
related and arc basically random. Between 80°N and 85°N, the gradient ratio varies quite a
bit while the SAR backscatter signatures were almost, constant. The data points (between
80°N and 85°N) make it apparent why multiyear ice concentrations derived from the two
sensors are different. Ins this case, the mean SAR backscatter was close to -9.3 dB while the
gradient ratio varied between -0.063 to -0.098. A similar set of plots for the gradient ratios

are shown in¥Fig. 14 but this time, multiyear ice concentration from SAR is used instead of
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SAR backscatter. The plot for all regions shows the non-linearity in the relationship. At the
latitudinal bands between 70°N and 75°N. the gradient ratio does not appear to be sensitive
to mullivear ice concentrations between O to 60(°. Between 60% and 90% . a strong linear
relationship is apparent, butafter 90%. the gradient ratio is still strongly varying while the

SAR multiyear ice concentration was almost constant at about 95%.

The gradient ratio is the ratio of the difference of the vertically polarized 19 Gllz and 37
GHz data and the sum of thesame set of data.Plots of 19 GHzand 37 GHz data versus
the SAR backscatter are shown separately in Figs. 13C and 13d, respectively. Data from t he
19 Gl1z channel can be seen to be linearly related to the SAR backscatter at all latitudinal
bands. At 80°N to 85°N, the data indicate that both brightness temperature and backscatter
are well-dcfll]ccl. It is thus apparent that the use of 19 Gllz alone to obtain multivearice
concentration could provide results that are more consistent with the SAR data. 'The scatter
plot of 37 Gllz versus the SAR backscatter also show approximately linear relationships but
it is clear that within tile latitudinal range from 80° N to 85° N the distribution of data is

similar to the gradient ratio versus SAR distribution.

The good correlation of 19 GHz data with the SAR data brings in the question of whet her
snow cover is partly a reason for thelower values in the multiyear ice concentrations derived
from passive microwave versus those from SAR. 1L ¢ SAR and 19 Glz data are not as
sensitive to snow asthe 37 GHz data. While volume scattering inthe multiyear ice may
still be the dominant mode of scattering that enables discrimination of first year ice from
multiycar ice, the 37 Gllz data may also reflect scattering of the 0.8 cinradiation with snow

cover. Radiative transfer modeling studies of snow indicates that this effect is not negligible.

5 Summary/Discussion

Team A lgorithm Estimates - Summary




over the annual cycle, the total ice concentration remained fairly high i our region of
studv. From the Team algorithm estimates we observe a significant decrease inthe amount
of multiyear ice (almost 40%) between January and spring melt and a slower increase in
the amount of multiyear ice between September and December. We hypothesized that these
trends can be explained by the evele of insolation on the snow Javer at the beginning and
the end of winter. The multivear ice concentration at freeze up i's much lower than the
ice concentration at the end of summer, an inconsistency in the analysis which suggests an
underestimation of multivear ice in the winter time. Meltponds and other surface cffects

scemn to contribute significa 111,]‘\'/;’()11/»' the underestimation of ice concentration in the summer.

Why would the Team algorithm underestimate multiyear cone.mitratioll? One possible reason
is the low values of reference brightness temperatures of multiyear ice used by the algorithm.
Because of the large variability of the emissivity of multiyear ice, the reference brig htness
temperature of multiyearice appropriate for the entire Arctic region is difficult to establish.
Aniother reason is having signatures similar to those of first-year ice. Somc observations
have shown that refrozen meltponds canhave signatures of first-year ice. Also, thesnow/ice
interfaces of previously flooded multivearice floes could have signatures of first-year ice
because of relatively highsalinity at the surface. Furthermore, second, year ice may have

different emissivity than other types of multiyecaricc,as has been previously observed.
SAR cstimates - Summary

The SAR analyses suggest anice cover inthe Beaufort which is rather stable, hroughou ta
season, in terms of multiyear ice concentration. The amount of multiyear ice cmained ap-
proximately constant, within the level of uncertainty of the analysis. The average multiyear
ice concentration in this part of the Arctic Ocean is approximately 80%. At the end of the
summer, the multiyear ice concentration is approximately equivalent to the ice concentration

at the end of the summer. The analyses give a consistent view of the annual cycle.

We have analyzed the possible confusion for identification of multiyearice inthe winter
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\
7
/ 4 Beaufort Sca. Evidence seem to indicate (discussed inthe last section) that deformed first- ,)’

W%

vearice,withinthe level of uncertainly, doesnot contribute significantly to the overestimation
of multivear ice in SAR data. TheC-band radar, to first-order, is not affected by snow
cover when the temperature is below freezing and much less sensitive 10 weather eflects.
The summer/winter consistency and the small fluctuations in the SAR estimates lead us to

25 (
. SRR .
believe that these estimnates to ¢ reliable. -

Multiyear ice concentration

The significance of the multiyear ice in the Arctic Ocean can be attribute{ to its strong re-
lation to the summer ice concentration [Comiso, 1 990; Hothrock and Thomas, 1 990]. If t here
| oare changes in the climate which cause persistent decrease in the suinmer ice concentration,

s /
1. . . . . . PR .
~ “rawould be reflected in a decrease inthe amount of multiycar inthe winter. This reduction !

s B
#2427  would be due to increased melt or export of ice from the Yram strait. An accurate record of
the multivear ice balance and fluctuations would be usefulinunderstanding the relationship

between climate and multivear ice balance.

Rothrock and Thomas [1 990] demonstrated that more multiycar ice is required to maintain
consistency between the summer ice and winter multiyear ice concentrations. However. as
they carefully indicated. their Kalman filter smoother can insist on consistency but without
providing more accurate estimates if the observations are biased. That is, the estimates
themselves are biased. At this point, the analysis of the SAR data offers another estimate
of the multiyear ice, which seeins to be consistent with the sumimer ice concentration. If the
SARis correct, thenthe Team algorithm underestimates the multiyear ice by even a larger
amount than previously suggested and there is more multiyear ice in the Beaufort Sca.
TLINE U

o
A
Meltpond fraction and ice cxtent S
i

13othopenwater and meltpools ha‘v('/fsignaturc of open water and the Team algorithm doces
not discriminate between the two surface types. It underestimates the ice concentrations

i n the summer. f the meltpond concentration is 30%, thenthe estimates would be biased
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by a similar amount. This is consistent with the differences between the SAR analysis and
the Team algorithm analysis: the SAR estimates of total ice concentration is alwayvs higher
than that of the Team algorithin estimates inthe summer. This difference is also larger
inthe lower latitude bands suggesting that meltpond fraction is dependent on latitude and

proximity to the coast [Ro manor, 1993].

If T'cam algorithm underestimates the totalice concentration clue to melt ponds,especially
inthe ice margin in the summer, thenthe 15% ice edge would be displaced resulting inan

underestimation of the actua ice cover [Comiso and Nwok, 1 995).

Summary Remarks

<

The estimates from the SAR and Team algorithms provided two fairly different vim» of the A

Beaufort Sea ice cover. Thelimitations of both algorithms were discussed. The differences
explain some of the possible biases of these algorithms due to variability i signaturc as
functions of wavelength] and environmental conditions. Future investigations using these

/s
datasects should be cautious of sue]] possible biascs})f introduced by these datasets.
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IFigure Captions

Figure 1. ¥xpected variability of sea ice cover over an annual cycle.

Figure 2. The comparative analysis uses ERS-1SAR data and SSM1 data from the region

defined by these boundaries.

IYigure 3. Sample SAR ice classification map (winter). (@ Theimage and theice type map.
(b) The image and the ice type map 3 days later. (White = multivear ice; blue = deformed

first-yearice; green = undeformed first-year ice; red = smooth thinice or calm open water).

Figure 4. Sample SAR classification] map (summer). (@) SAR image.(b)linage classified

into ice, greaseice and open water. (White = open water; blue = ice; red = grease ice).

Figure b, View of theice cover from SAR. (a) January. (b)February. () March. (d) April.
(c) May. (f) June. (g)July. (h) August. (i) September. (j) October. (k) November. (1)
December. The winter scenes show very stable SAR backscatter while the contrast that is
tvpicalin the winter is lost inthe summer. The strips arc 100km i width and the longest

strips contain up tol5image frames (or 1500 kminlength).

I'igure 6. comparisons of the totalice and multivear ice concentrations at five latitude

bands. (8) 70.0°- 72.5°. (b) 72.5°-75.00. (C) 75. °77.5°. (d) ?7.5°-80.00. (¢) 80.0°.

Figure 7. Multiyear ice concentration isopleths of the study region. (@) Day 18. (b) Day 21.

(¢c)Day 71. (d) Day 74.(¢)Day 90.
Figure 8. Monthly-averag ed SSM1multiyear ice concentration maps.

Figure 9. Mean monthly velocity and divergence calculated from wind andbuoy data. (a)
September 1, 1991 - April 1, 1992. (b) April 1, 1992 - September 1, 1 992. (C) Septemberl,

1992 - April 1, 1993. (Courtesy of R. Ii. Moritz, R. Colony and K. Runciman, Polar Science



Center, University of Washington )

Figure 10. The difference between the Team algorithm derived multivear ice concentration
mJan 1,1992 and April 1, 1992. A significant decrease in the multivear ice concentration

can be observed.

Figure 11. Differences between the Bootstrap and Team algorithm -derived total ice concen-

tration 011 Sept b, 1992.

Figure 12. Image sequence showing the compactness of the ice cover before and after fall
frecze-up. (@) 80°N. (a) 75°N. The common features between the images (where they could

be identified) are marked with an “X’.

Figure 13. Comparison of SAR and passive microwave signatures at three latitudinal bands.
(a) Polarization ratio vs SAR backscatter.(b)Gradient ratio vs SAR backseat ter. (c) 19

GHzbrightness temperature vs SAR backscatter. (d) 37 GHz brightness temperature vs

SAR backscatter.

Figure 14. Scatterplot of gradient ratio at various latitude bands versus SAR multiyear ice

concentration.
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Table 1

Consistence in the Classification of MY ice
in 3-day repeat SAR imagery

Image pair MY concentration
3620 98.35
4092 98.29
3621 97.65
4093 97.84
11280 95.83
11955 96.16
11284 96.35
11959 96.37
11287 95.79
11962 95.83
11288 94.74
11963 94,56
11289 94,89
11964 94.61
11295 70.51
11970 70.32
13009 95.32
13726 95.96
13011 94.26
13728 94.34
RMS error 0.27
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‘(c) Mean Ice Velocity : Sep 92-Apr 93
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